永信贵宾会 > 医学科学 > 肿瘤的分子病理诊断

肿瘤的分子病理诊断
2019-11-27 00:28

1、分子诊断在肿瘤研究中的意义 1.1肿瘤易感基因的检测:肿瘤遗传相关的易感基因检测对于肿瘤高危人群的筛检具有实用价值,已明确的肿瘤易感基因及其相关肿瘤有Rb1、WT1。p53(Li-Fraumeni综合征)、APC(家族性腺瘤性息肉病)、HNPCC(遗传性非息肉病性结肠癌)、NF1、VHL(VonHippel-Lindau综合征)、PTEN(Bannayan-Riley-Ruvalcaba综合征)、BRCA(家庭性乳腺癌、卵巢癌)等。除了检测高危人群的易感基因外,有方法也应用于正常人群肿瘤易感性检测,如检测Ret基因突变用于诊断Ⅱ型多发性内分泌肿瘤,通过分析GST基因型以判断个体暴露于致癌物时的致癌危险性等。 1.2肿瘤的分类:判断淋巴细胞增生与淋巴细胞性肿瘤及其克隆起源,应用RFLP分析免疫球蛋白或T细胞受体基因重排,具有鉴别诊断作用,且这种分子病理分型比免疫学分型更为准确。对Bcr区基因重排的检测,可对慢粒和急粒进行鉴别诊断。N-myc和C-myc扩增和表达的检测,对鉴别神经母细胞瘤和神经上皮瘤具有应用价值,因前者N-myc明显扩增,而后者则为C-myc明显扩增。 1.3肿瘤的早期诊断:K-ras基因突变是一种胰腺癌、结肠癌和肺癌等肿瘤中发生率较高的分子事件,突变集中在第12、13和61编码子。应用细针穿刺活检材料检测胰腺癌的第12编码子变突,检出率可达100%,应用PCR-RFLP方法检测结肠癌患者粪便中的Ras基因突变,其检出率与瘤组织中相似,可用于高危人群的筛选。 1.4肿瘤的预后判断:肿瘤基因的突变、扩增及过表达等改变常与肿瘤的预后密切相关,如p53基因突变与乳腺癌、肝癌、结肠癌等多种肿瘤预后有关,nm23的状态则与肿瘤转移相关。研究发现从分子水平上判断肿瘤的生物学行为及预后具有较高的准确性。如Vogelstein根据结肠癌相关基因的变化,提出了结肠癌癌变和演进的分子模型,阐述了癌基因激活、抑癌基因失活与肠上皮细胞增生、癌前状态、癌变和转移各阶段基因变化的特征。此外,文献中对胃癌、肝癌、肺癌等也提出了类似的分子模型。 1.5肿瘤的预后监测:分子诊断在肿瘤的监测方面也具有重要的作用,如临床治疗缓解期内白血病的白血病细胞仍达1011,用细胞遗传学方法检出率约为1%~5%,应用核酸杂交技术灵敏度可达0.15%~0.05%,而PCR技术则可使检出率达到10-6左右。提高了对肿瘤转移、复发监测的准确性,有助于及时采取适当的治疗措施 1.6为肿瘤个体化和预见性治疗提供依据:肿瘤发生、发展的不同时期,可能涉及不同基因的不同变化形式,而基因的变化及基因间的信号传递与肿瘤临床治疗的敏感性密切相关,如能在分子水平对肿瘤基因变化提供指标,对肿瘤的个体化和预见性治疗具有指导意义。如在90%的胰腺癌、50%的结肠癌、30%的非小细胞肺癌中存在Ras基因的激活,50%左右的肿瘤有p53基因不同形式的突变,这些基因的异常,使肿瘤对某些放疗或化疗的方法具有抵抗性,如能从基因水平上改变异常基因的状态,则可提高放、化疗的敏感性。 2、分子诊断在肿瘤研究中的应用 2.1基因过表达的检测:癌基因的激活和抑癌基因的失活是肿瘤发生过程中的关键因素。癌基因的激活有多种表现形式,其中基因产物过表达为重要形式之一,可表现为mRNA和蛋白质量的增加,此外,基因扩增可表现为基因拷贝数的增加,这些基因表达的异常,均可加以检测。 2.1.1表达产物的检测:蛋白质水平基因表达产物的检测最常用的方法为免疫组化技术,也可应用酶联免疫吸附和Western蛋白印渍法。新一代测定方法为流式细胞仪法(flowcytometry),更新的影像细胞测试法(imagecytometry)则可应用特定波长的光密度进行积分,进行特定蛋白质的定量分析。 2.1.2基因扩增的检测:基因扩增主要表现为基因拷贝数的增加和转录产物mRNA的增加,经典方法为DNA和RNA和印渍杂交。但应用更普遍的为组织细胞原位核酸分子杂交,包括原位杂交、荧光原位杂交、对比基因组杂交。近年发展较快的荧光原位杂交和对比基因组杂交在肿瘤分子诊断中具有重要的应用价值。原位PCR技术作为一种敏感性高、特异性强、能在组织细胞原位进行低拷贝数基因定位的研究方法,在分子诊断中发挥了重要作用,其灵敏度比原位杂交高出2个数量级,是形态学和分子生物学前沿交叉的产物,对前沿研究和学科发展起着巨大作用。Anderson曾在1994年生动地指出“原位PCR使光学显微镜超过电子显微镜在向生物化学和遗传学领域延伸。” 2.2基因突变的检测:癌基因和抑癌基因突变是肿瘤发生中出现频率较高的分子事件,不仅在肿瘤细胞中可检测到突变基因,在一些癌前病变或癌前状态的组织细胞中也存在不同形式和程度的基因突变,基因突变的检测对研究肿瘤发生机制、诊断和鉴别诊断、预后评估及治疗方案选择等都有重要价值。基因突变形式主要有点突变、基因缺失(1~2个碱基缺失,一个片段或一个外显子缺失)、基因易位或重排、基因插入、甲基化及染色体非组蛋白改变等。 基因突变及其检测方法研究已成为生命科学研究的热点。1985年以前,主要应用Southern杂交,可筛选出基因的缺失、插入和移码重组等突变形式,对于不能用该法检测的突变,也可用NDA序列测定分析,但复杂费时。促进了基因突变检测技术的发展,目前大部分基因突变检测技术都是以PCR为基础,已达20余种,比较成熟的技术包括PCR-SSCP法、杂合双链分析法、突变体富集PCR法、变性梯度凝胶电泳和温度梯度凝胶电泳法、化学切割错配法、等位基因特异性寡核苷酸分析法、DNA芯片技术、连接酶反应、等位基因特异性扩增法、RNA酶A切割法、荧光原位杂交、寡核苷酸引物原位DNA合成法、比较基因组杂交法和DNA序列分析等。 2.3限制性酶切片段长度多态性分析:通过对DNA分子的分析识别特定基因组区域的丢失及扩增,其中较重要的一种研究为应用同一个体的正常体细胞(血细胞或瘤旁正常组织)及肿瘤细胞的DNA,检查DNA多态性座位上等位基因的不平衡性,当两个等位基因的相关性密度在正常与肿瘤细胞之间出现显著性差异时,就提示肿瘤细胞中多态性序列座位处出现突变,当DNA序列的差异发生在限制性酶识别位点或当DNA片段插入、缺失或重复,可使基因组DNA经限制性内切酶水解发生片段长度改变,在不同个体间可出现不同长度的限制性片段类型,故称为限制性酶切片段长度多态性。RFLP技术可直接分析癌组织中某些基因在染色体上的变异及其与肿瘤发生的关系,精确位点的RFLP分析还是发现新的肿瘤基因的有效手段。目前能用于RFLP分析的肿瘤基因探针和基因位点探针已有数百种,覆盖了人类23对染色体,是肿瘤分子诊断的重要方法之一。 2.4微卫星不稳定性分析:微卫星不稳定性检测是基于数量可变串联重复序列的发现,细胞基因组含有大量碱基重复序列,一般将6~70bp的串联重复称为小卫星DNA或VNTR,1~4bp的串联重复称为微卫星DNA或简单重复序列,SRS为新的DNA多态性标志之一。微卫星不稳定性是指SRS的增加或丢失,特别是在DNA错配修复系统缺损的肿瘤基因组中,常显示大量MI。MI仅在瘤细胞中发现,目前已发现存在于肠癌、胃癌、肺癌、乳腺癌、肝癌等多种肿瘤组织。检测MI方法为PCR扩增及电泳分析,如结合显微切割技术,则可使检测目的更为明确。 2.5端粒酶及其检测:端粒酶与肿瘤关系的研究是近年来十分活跃且发展迅速的领域之一,近年的研究表明,人类肿瘤中85%左右的肿瘤细胞存在端粒酶活性表达,对端粒酶的研究有可能为肿瘤的发生发展、诊断、预后等提供指标,并可能以抑制端粒酶表达为手段作为肿瘤治疗的新方法。 端粒酶活性检测经典方法为端粒重复扩增技术,TRAP法分析结果是非线性的,样品间的比较和定量比较困难,且操作复杂,也不适用于小样品,而且由于有些组织中含有Taq酶抑制物,会出现假阴性结果,目前不少研究者致力于端粒酶检测方法的改进,有人应用接近闪烁分析技术,在96孔板上进行TRAP操作,可用作大规模临床样本及端粒酶抑制剂的筛选。ELISA法是利用端粒酶在生物素标记的引物上加入多个6核苷酸端粒重复序列,反应产物用生物素标记的引物进行PCR扩增,与地高辛标记的探针杂交,再与抗生物素蛋白包被的微量滴定板结合,该法省时且无放射性污染,可减少假阴性。原位杂交法检测端粒酶活性也有报道,有可能通过原位杂交区分正常和肿瘤细胞,但仍有待于进一步的成熟,稳定。 3、肿瘤分子诊断的发展前景及其标准化 分子诊断技术是肿瘤分子病理研究具有划时代意义的检测手段,拓宽了病理学研究的范围,使我们对肿瘤发生发展、形态特征、生物学行为的认识进入分子水平,分子诊断的大部分技术已日趋成熟,但目前还主要用于研究领域,真正用于临床检测的技术开展得还比较少,费用昂贵、操作复杂是重要原因,分子诊断技术也不能完全取代许多目前使用的行之有效的实验室诊断方法。肿瘤病理诊断仍应坚持以形态学为基础的原则,分子诊断只是这些方法的补充、改善和提高。 分子诊断目前仍存在一些问题,由于其技术一般都具有敏感性高的特点,特别是PCR技术,结果影响因素较多,最大的问题为技术性假阳性和假阴性,PCR技术本身已比较成熟,要使检测技术具有高敏感性,又要确保检测结果的高特异性和重复性,质量控制至关重要,关键在于建立标准化的实验操作程序和标准化的分子诊断实验室,除诊断技术方面的标准化外,诊断指标也要实行标准化,这样才有可能对肿瘤的诊断、鉴别诊断、浸润转移、临床治疗方案的选择及生物学行为的评估等方面提供有意义的指标,这将是每位病理学家所面临的机遇和挑战。

模板DNA的变性

模板DNA的变性:模板DNA经过加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,完成下一轮扩增反应;

利用PCR技术鉴定性别在法医学鉴定、运动员性别鉴定、产前诊断中有重要意义。以产前诊断为例,因为遗传的X-连锁疾病紧影响男性,所以性别鉴定是产前诊断的第一步。男性在Y染色体有独一无二的序列,如3.5kb的DYZ1序列在Y染色体上有5000多个拷贝,用PCR技术扩增出DYZ1序列上的男性特异的一个149bp的片段,就可鉴定为男性。在一个产前性别鉴定实验中,研究人员用微量法从体外受精后的6个着床强的人胚胎细胞中个取出一个细胞,每个细胞的DYZ1序列利用PCR循环60圈,有扩增片段的胚胎就是男性胚胎

3)残留癌细胞监测中的作用

反向PCR的基本操作程序:a、用一种在靶序列上没有切点的核酸内切限制酶消化相对分子质量较大的DNA;b、产生的不同大小的线性DNA片段群体,其中具靶DNA区段的DNA分分子长度不超过2~3kb,经连接后重新环化成环状分子;c、按靶序列设计的一对向外引物与靶序列5’端的互补序列退火结合;d、经PCR扩增产生的主要是线性双链DNA分子,它是由左侧序列和右侧序列首尾连接而成,其连接点是a中所有用的限制酶的识别位点。

pcr技术步骤

(3)不对称PCR技术

二、基因克隆

在检测病毒方面,做得比较多的是对结核、麻风、沙眼衣原体、金黄色葡萄球菌、霍乱弧菌等的检测和研究。

6)在器官移植配型中的应用

(2)锚定PCR技术

遗传病是一大类严重危害人类健康、影响人口质量的疾病。有些遗传病在胎儿出生后有一定的治疗手段,这一类遗传病如早期发现,便可早期治疗,防止其并发症特别是不可逆性的后果发生。而另一类遗传病目前尚无有效疗法,就应在患儿出生前做产前诊断,确诊后进行人工流产或引产,以保证人口质量,减少家庭和和社会负担。目前对遗传病的基因诊断方法主要是用DNA分子杂交和RFLP的方法,比较复杂、费时而且费用昂贵,PCR则为遗传病诊断提供了快速、简便而准确的手段。目前国内外采用PCR诊断的遗传病已有数十种,最常见的有α-地中海贫血、β-地中海贫血、镰刀状红细胞贫血、血友病、苯丙酮尿症、肌营养不良症亨延顿氏舞蹈症等。这些都是由于基因的突变缺失或重拍造成的遗传病。

pcr技术分类

在PCR反应中如果所用的寡核苷酸引物引物太短,那么所得的扩增产物将是一群长短不一的DNA片段混合物。这种情况虽对PCR扩增的特异性来说是不利的,但在此基础上发展的应用短片段的寡核苷酸引物所作的随机扩增,对于系统发育的研究却是十分有用的技术。重要的一点是用随机引物扩增出来的PCR产物,经琼脂糖凝胶电泳之后所呈现的带型反映着用作扩增模板DNA分子的总体结构特征。如果起始材料用的是细胞的总DNA,那么扩增的带型便代表着细胞基因组的总体特征。因此,应用随机引物的PCR扩增能够测出两个生物体基因组之间的差异。两个物种的个体之间,亲缘关系越接近,其相应的PCR扩增带型也就越相似反之则差异也就越悬殊。

PCR技术的基本原理类似于DNA的天然复制过程,其特异性主要依赖于和靶序列两端互补的寡核苷酸引物,它由变性——复性——延伸三个基本反应步骤构成。首先,根据靶序列DNA片段两端的核苷酸序列,合成两个不同的寡聚核苷酸引物,它们分别与DNA的两条链互补配对。将适量的寡聚核苷酸引物与四种脱氧核糖核苷三磷酸、DNA聚合酶以及含有靶序列片段的DNA分子混合,经过高温变性使DNA双链解开、低温复性使底物与模板附着和中温延伸合成新的DNA片段这三个阶段的一次循环,DNA的量即可增加一倍,而循环n次,则DNA的量增加2n倍,扩增反应迅速地循环,产生了大量相同的片段,每一片段中均包含目的DNA片段。

DMD是男性中常见的一种性连锁致死性遗传病。DMD基因的双链DNA为14kb,序列已经清楚,大约50%~60%的病人存在基因的部分缺失。用双链DNA探针做Southern印迹可以检测基因的缺失,但必须用十余个探针,步骤多、时间长并且需要大量的完整的基因组DNA。Caskey等设计了多重PCR扩增系统,即加入多对位于一缺失的外显子中的引物,同时扩增。扩增后的产物可直接电泳观察,如有某个外显子缺失,就看不到相应的条带。这种方法快速、灵敏,可查出缺失型中的70%~80%。

pcr技术应用

2、嵌合基因的检测某些人类恶性疾病,如滤泡性淋巴瘤等,具有特异性染色体易位,因此形成了由不同基因组成的嵌合基因。因为在正常组织细胞中不存在这类嵌合顺序,所以用于易位点两侧DNA顺序互补的引物,扩增基因组DNA时则无靶DNA片段形成;如检测标本中存在携带易位的恶性细胞则有特异性DNA片段的扩增产物。

利用完整的细胞作为一个微小的反应体系来扩增细胞内的目的片段,在不破坏细胞的前提下,利用一些特定的检测手段来检测细胞内的扩增产物。直接用细胞涂片或石蜡包埋组织切片在单个细胞中进行PCR扩增,可进行细胞内定位,适用于检测病理切片中含量较少的靶序列。

b、引物位于点突变两侧,当点突变引起限制性内切酶识别为点的改变时,则可用相应的内切酶处理扩增产物,可作出明确判断进行杂交。在严格杂交条件下,根据与何种ASO探针杂交,可判断有无突变及突变的类型。

e、PCR产物单链构像多态性分析,这一方法是根据同一顺序位置的不同碱基替换,以及同一碱基在不同位置的替换,在非变性聚丙烯酰胺凝胶电泳上有不同的迁移率,来对基因突变作出分析。

PCR由变性--退火--延伸三个基本反应步骤构成:

2)PCR在遗传病的诊断和研究中的应用

(6)多重PCR技术

反向PCR是克隆已知序列旁侧序列的一种方法。主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组DNA.后酶切片段自身环化。以环化的DNA作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段。

图片 1

(8)原位PCR技术

肿瘤的发生与演进是一个多阶段的过程,其中包括多种癌基因的激活和抑癌基因的失活,一起上述改变的遗传学基础主要是点突变、重排、扩增和缺失等。PCR技术为检测这些DNA异常提供了敏感、快速和特异方法,这不仅促进了肿瘤分子遗传学的发展,并为临床肿瘤学上的应用开创了新的条件。

抑癌基因失活的研究

在同一反应中用多组引物同时扩增几种基因片段,如果基因的某一区段有缺失,则相应的电泳谱上这一区带就会消失。主要用于同一病原体的分型及同时检测多种病原体、多个点突变的分子病的诊断。

癌基因激活的检测

1)在传染病的诊断和研究中的应用

pcr技术原理

1、点突变的检测应用PCR技术检测点突变,须与其他技术相结合,主要方法有以下几种。

PCR技术不仅可以有效地体外诱发基因突变而且也是检测突变的灵敏手段。已经知道人类的癌症及其他一些遗传疾病是与基因突变有关的。显然,弄清楚突变的性质无论是对于诊断还是治疗都是具有十分重要的意义的。例如,许多癌症都与癌基因ras的突变有关,目前已应用PCR技术分析了该基因的突变模型及频率。应用PCR扩增可迅速的筛选大量的患者样品,具体应用如前文所述。

用酶法在一通用引物反转录cDNA3’-末端加上一段已知序列,然后以此序列为引物结合位点对该cDNA进行扩增,称为APCR。

在检测病毒方面,做得比较多的是对艾滋、人乳头状瘤病毒、人T细胞淋巴瘤病毒、EB病毒、肝炎病毒等的研究。以前AIDS病的诊断主要采用的是血清学的方法。虽然血清学试可以确定是否接触过HIV病毒,但它不能确定是否存在HIV感染。因为HIV感染者的外周血淋巴细胞中仅万分之一含有病毒RNA,所以采用体外培养来使HIV病毒繁殖,往往需要三到四周,而且不稳定。如果采用PCR技术来扩增HIV病毒的保守序列,再鉴定HIV病毒,则不仅使诊断的敏感度大大提高,而且时间也大大缩短。

五、基因组的比较研究

两种引物浓度比例相差较大的PCR技术称不对称PCR。在扩增循环中引入不同的引物浓度,常用50~100÷1比例。在最初的10~15个循环中主要产物还是双链DNA,但当低浓度引物被消耗尽后,高浓度引物介导的PCR反应就会产生大量单链DNA。

引物的延伸:DNA模板-引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列DNA序列为模板,按碱基互补配对与半保留复制原理,从5’端到3’端延伸出一条新的与模板链互补的半保留复制连,重复循环变性——复性——延伸三个过程就可获得更多的“半保留复制连”,以这些新链为模板就可进行下一次的PCR循环。

d、扩增的片段直接进行DNA顺序分析,可直接测出突变点。